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Introduction to the Session on Structural Dynamics
by
I. E. Garrick

National Aeronautics and Space Administration

It is my privilege to act as chairman for this Session on
Structural Dynamics. I wish to give a special welcome to the 15
professors who were at the Langley Research Center in the American
Soclety for Engineering Education program. The full session topic
could appropriately reéd, "The Role of Simulation in Structural
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Dynamics for Space Technology;" still more precisely, we could use
the word "similitude" for the word "simunlation." "Simulation" is

a word with many connotations. It could mean pretending to be what
you are not, for example, the protective coloration assumed by some
animals in nature; or it could stand for the act of piloting a space
vehicle without leaving the ground. In the use of the word in stru-
ctural dynamics, we may mean to describe the role of a similar or
dynamically scaled model, or even the parameters .of governing eguations
of a mathematical model. A mathematical idealization of a physical
situation always contains a degree of simulation. The art of a math-
ematical model lies in the simplest model that yet simulates. In

fact, for Nature herself, the word "simulation" has the two distinct
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meanings: as, for example, protective color in animals or insects;
or the meaning as given in D'Arcy Thompson's classic book, "On Growth
and Form;" in which famous scaling laws applying to large and small
species in natural evolution are so clearly described.

All three of the talks for this morning's session are being given
by my colleagues from Langley, and these talks, as well as the fourth
talk to be given by Mr. Bozajian this afternoon, all deal with space
vehicles, launch vehicles, and payloads, on the ground and in space.

As you may know or realize on brief refléction, the major cost of our
national space programs is in the hardware, in the véhicle itself, and
its payload; thus, the major problems, moneywise, are in the engineering
technology rather than in pure science. BSpace sclence, however, cannot
be pursued without a suitable technological base. Distinguished sci-
entists have frequently planned their scientific experiments well, but
in many early space attempts have completely overlocked factors of the
environments in which these experiments are placed. The role of sim-
ulation in space technology is thus very much like an insurance premium,
and its main objectives are to reduce costs and ensure religbility of
the final products. Many factors need to be considered in the realm of
simulation of similitude: structural dynamics; physical phenomena;
governing mathematical equations; parameters, dimensional and non-
dimensional; the natural environments as well as induced environments;
material properties. Although very much remains to be done, progress

has already been made, as our speakers will disclose.
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Figure 1.~ Approaches to experimental anelysis of space wvehicles.

1 ON THE BASES OF PAST EXPERIENCE WITH
RELATED PROBLEMS

2. DERIVATION AND NONDIMENSIONALIZATION
OF GOVERNING EQUATIONS

3. FORMATION OF RATIOS OF DIMENS IONALLY
SIMILAR QUANTITIES WHICH GOVERN
SYSTEM RESPONSE

4. APPLICATION OF THE PRINCIPLES OF
DIMENSIONAL ANALYSIS

Fgure 2.- Technigues for oBtaining pertinent dimensionless ratios.
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Figure 3.- Derivation of dimensionless ratios by nondimensionalization of governing equations.
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Figure %.- Example of a complete set of dimensionless ratios for an assumed set of
pertinent variables.

¢ GEOMETRIC:
CORRESPONDING LENGTHS ARE PROPORTIONAL OR
CORRESPONDING ANGLES ARE EQUAL

@ KINEMATIC:
CORRESPONDING CHANGES IN GEOMETRIC SHAPE
OR POSITION OCCUR AT TEMES WHICH ARE
PROPORTIONAL

® DYNAMIC:

CORRESPONDING FORCES ON CORRESPONDING
ELEMENTS OF MASS PRODUCE INTERNAL AND
EXTERNAL MOTIONS WHICH ARE GEOMETRICALLY
AND KINEMATICALLY SIMILAR

Figure 5.- Definition of various types of similarity.



® SCALE FACTORS _
LENGTH: lf = )\lm

TIME: t=tt
MASS: mf-umm
TEMPERATURE: 9f=ﬁef

® RE{ATIONSH{P OF SCALE FACTORS FOR SIMILARITY
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Figure 6.- Inherent relationships for various types of similarity.
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Figure 7.- Sources of excitation of space vehicle structures.
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Figure 8.- Various types of dynamic models uged in space vehicle systems analyses.
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Figure 9.- Dynamic¢ models of launch vehicle configurations under study at the
Langley Research Center.
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Figure 11.- Damping of 1/5-scale structural dynamics model of Titan TII.
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Figure 12.- Sketch of l/5-scale structural dynemics model of Titan TII.

Figure 13.- Nimbus - Polar Orbiting Weather Satellite.



COMPARISON OF MODEL AND FULL SCALE RESPONSES
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Figure 1k.- Comparison of responses at the base of contrel section on 1/2—scale nodel and
full-scale spacecraft. Excitation along pitch axis. Model frequencies divided by 2.
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Figure 15.- Effect of solai' panel damping on dynamic amplification as a function of'

excitation frequency. .
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Figure 16.- Impact simulator for luner and planetary gravitational fields.

Figure 17.~ 1/6-scale dy-nﬁmic model of lunar landing spacecraft.
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Figure 18.- Effect of atmospheric pressure and amplitude of oscillation on aerodynamic
damping of plates and spheres. .
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Figure 19.- Effect of model scale on damping.
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Figure 20.- Horizontal support systems for launch vehicles.

3

Mmcm

/[ supporT )
b7/ b

\
\ FIXED
{. ’\i - tf/ PULLEYS
|
|

[
\

|

VEHICLE WiLL
STAND ERECT IF

Wb
2
L
8(& '5)

RIGID
SUPPORT

VEHICLE WILL
STAND ERECT IF

b ¢
a>f(é—1 E)“b

FRESTRAINING
CABLES—1

\

_._:::__.___q

L

>

(

1
i
i
i
i
i
i
i

i

il
i
|

(
(

@
—

TURNBUCKLES—

(i

C.g.

!

e
f
1

S
=

A

|
i
|
|
I
|
I
I
!
!
!
|
[

t-— SUPPORT
CABLES—

o

T
o

[/

U Sl
L' [ ”—l

HIGH BAY HARNESS LOW BAY HARNESS

NASA

Figure 21.- Vertical support systems for launch vehicles.
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